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Abstract
We present a semi-phenomenological theory of the strain-induced interaction between
interstitial oxygen dissolved in Nb and predict an incommensurate oxygen ordering wave which
is mediated by the intrinsic bcc instability at k = 2/3(111). We discuss the stability range of
this ordering phenomenon, which may play a role in the performance of Nb radio frequency
(RF) cavities for high energy particle accelerators.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the most advanced current applications of niobium is
in the superconducting RF cavities of modern linear electron
accelerators. The materials science challenge is to improve
the high frequency superconducting performance such that
highest field gradients are possible in order to achieve short
acceleration distances and thus save costs. In recent years
it has been discovered that electric field gradients up to and
beyond 35 MV m−1 are possible by a surface annealing of the
Nb cavities [1, 2]. While it is still unclear on the microscopic
level what structural changes are induced upon annealing, it is
assumed that oxygen and its redistribution at the surface and in
the subsurface region plays a crucial role [3].

This theoretical work has been triggered by the results
of a recent in situ x-ray diffraction study of the different
Nb-oxide layers as they emerge and disappear at different
annealing conditions [4]. A particularly interesting aspect
has been the detection of atomar oxygen which is injected
into the interstitial Nb lattice from the dissolving Nb-oxide
layers (figure 1). It is well known that the presence of
defects deteriorates the superconducting properties of Nb and
by this the performance of the niobium cavities (see e.g. [5]).
Interstitial oxygen has a particularly large effect, decreasing
the superconducting transition temperature by 0.93 K per at.%
and increasing the resistivity in the normal state by 5.2 μ� cm
per at.% [6].

At low concentrations, interstitial oxygen is disordered
in the interstitial Nb lattice. However, above a certain
concentration, oxygen can form a sequence of ordered
phases [7, 8]. A possible ordering force is mediated by
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Figure 1. RF field decay in Nb and subsurface interstitial oxygen.

the static lattice distortions around the oxygen defect, as
shown theoretically using a simple model for the local lattice
distortions description [9]. We address here a new ordering
mechanism for subsurface interstitial oxygen exploiting a more
elaborated model of the local lattice distortions which has been
proposed [10, 11] from a detailed analysis of diffuse neutron
scattering data in NbOx (this will be discussed in more detail
in what follows).

Interstitial oxygen is dissolved in bcc metals (like Nb)
on so-called octahedral sites (figure 2) thereby inducing
distortions (U p(R)) in the local lattice neighbourhood. They
can very elegantly be modelled by so-called elastic (‘Kanzaki’)
forces F p(R) [12] which act on the Nb atoms around the first
neighbour shells of the interstitial sublattice p (see figure 2),

U p(R) =
∑

R′
G(R,R′)F p(R′), (1)

with G(R,R′) as the lattice Green function (see e.g. [13]).
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Figure 2. Kanzaki forces around one octahedral O interstitial acting
on the first-( f1), second-( f2) and third-( f3) nearest Nb neighbour
atoms (note that only four (out of eight) third-nearest-Nb neighbour
atoms are shown).

These defect-induced static distortions are very strong in the
local neighbourhood, typically 0.1 − 0.5 Å, and exhibit a
long ranging power-law decay (1/r 2) with distance r . The
resulting lattice expansion with oxygen concentration c (at.%),
�a/a = 0.126c [14], is directly related to the strength of the
long-ranged part of the displacement field by the relation

�a

a
= cP

�0(C11 + 2C12)
, (2)

where P is the defect strength, 22.6 eV in the case of O in
Nb [10], Ci j are the elastic constants and �0 is the volume per
atom.

The simplest Kanzaki force model which is consistent
with this experimental value and the octahedral symmetry of
the defect site requires elastic forces on the first and second
neighbour shell (‘2f model’). The associated long-ranged
distortions give rise to an attractive interaction between two
nearest oxygen defects. The strain-induced interaction was
calculated based on this 2f model and concluded [9] that a
commensurate ordered oxygen structure is stabilized with a
wavevector k = (1/2, 1/2, 0) (see below).

In a detailed experimental and theoretical study of
the diffuse neutron scattering in NbO0.02 the very local
lattice distortions around interstitial oxygen were determined
and it was discovered that they are inconsistent with the
2f model [10, 11]. Instead, the local lattice displacements
couple very strongly to the intrinsic bcc instability of Nb
which is manifested by the pronounced soft phonon at
k = 2/3(1, 1, 1). The local lattice distortions around
interstitial oxygen can be understood as a local freezing
of the soft 2/3(111) LA mode around the oxygen defect,
giving rise to a static local fluctuation of the so-called
ω-phase. Within the Kanzaki force approach, these ω-
like local distortions require elastic forces up to the third
neighbour shell (‘3f model’) [10, 11]. In what follows we
show—using the static concentration wave approach [15]—
that these ω-type distortions give rise to pronounced
incommensurate ordering waves of the interstitial oxygen.
We also show that this incommensurate ordered structure

is more stable than the commensurate order predicted
in [9].

2. Theoretical background

The strain-induced pairwise interaction energy V si
pq(R)

between interstitials at positions p and q in two unit cells
separated by the translation vector R is given by

V si
pq(R) = 1

N

∑

k

V si
pq(k)e−ikR, (3)

where the summation is carried out over the first Brillouin
zone. V si

pq(k) is the Fourier component of the interaction
energy which reads [15]:

V si
pq(k) = −Fp(k)G(k)F ∗

q (k)+ Q ppδpq (k �= 0), (4)

Q pp = 1

N

∑

k

Fp(k)G(k)F ∗
p (k). (5)

Q pp is introduced in order to exclude the so-called ‘self-
action’ [15]. In equations (4) and (5) Fp(k) is a Fourier
component of the Kanzaki force Fp(R) and G(k) is the
Fourier transform of the lattice Green function G(R,R′),
which is usually obtained via a Born–von Kármán fit to the
phonon spectrum [16, 17].

Within the mean-field approximation, the configurational
energy of the interstitial alloy in terms of the pairwise
interaction energies is [15, 18]

E = 1
2

∑

p,q

∑

R,R′
V tot

pq (R − R′)n(p,R)n(q,R′), (6)

where the summation is carried out over all interstitial sites
{p,R} and {q,R′}. The quantity n(p,R) is the occupation
probability of finding an interstitial atom in the (p,R)

interstitial site, and V tot
pq (R − R′) is the total interaction

energy of a pair of interstitials located at the interstitial
sites (p,R) and (q,R′). The total interaction energy V tot

pq
between two oxygen defects can be represented as a sum of
two contributions, the short-ranged chemical interaction V ch

pq
determined in the undistorted lattice and the strain-induced
interaction V si

pq mediated by the lattice relaxation [15],

V tot
pq (R − R′) = V si

pq(R − R′) + V ch
pq(R − R′). (7)

It is convenient to represent the occupation numbers {n(p,R)}
in terms of the amplitudes {γσ (k)} of the orthonormal set of
concentration waves. After diagonalizing the matrix V tot(R −
R′) in (6), one obtains1 [15]

E = 1
2

∑

σ,s

λσ (ks)	σ,sη
2
σ,s , (8)

	σ,s =
∑

j

|γσ (kjs)|2, (9)

1 In (8) the summation is carried out over all waves {σ, ks}, where ‘s’
determines the star of the wavevectors, and the summation in (9) is carried
out over the vectors js belonging to the same star ‘s’.
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Table 1. Two models of the Kanzaki forces for O in Nb.

Kanzaki forces (eV Å
−1

) 2f model [22] 3f model [10, 11]

f1 3.63 2.80
f2 1.06 −0.27
f3 0 0.54

where ησ,s is the standard long-range order parameter and
λσ (k) are the eigenvalues of the V tot

pq (k) matrix, which can be
determined from the secular equation

ν∑

q=1

V tot
pq (k)υσ (q,k) = λσ (k)υσ (p,k). (10)

The ‘polarization vectors’ υσ (p,k) are the eigenvectors of the
matrix V tot

pq (k), the ‘polarization number’ σ designates one of
the ν branches2 of the spectrum λσ (k).

From equation (8) one concludes that the structure of
the most stable ordered phase is determined by the star
kmin

s , whose wavevectors {kmin
js

} and polarization vectors
{υmin

σ (p,kmin
js

)} provide the absolute minimum of λσ (ks) [15].
The occupation probability function n(p,R), which describes
the atomic distribution in such an ordered phase, is defined as
a superposition of static concentration waves [15]:

n(p,R) = c +
∑

s

ν∑

σ=1

ησ

∑

kmin
js

γσ (kmin
js )υσ (p,kmin

js )eikmin
js

R,

(11)
where c is a concentration of the interstitial atoms. A detailed
description of the static concentration wave approach can be
found elsewhere (e.g. [15, 19, 20]).

3. Results and discussion

The Nb–O solid solution is composed of the bcc host lattice
and three interpenetrating bcc sublattices of the octahedral
interstitial sites (p, q = 1, 2, 3) which are occupied by oxygen
atoms. The position of any interstitial (p,R) is defined by a
vector

Rp = R + hp, (12)

where hp is the vector separating the interstitial from the host
atom in the unit cell R. In the case of the Nb–O solid solution,
the vectors hp have the coordinates

h1 = a0
(

1
2 , 0, 0

)
, h2 = a0

(
0, 1

2 , 0
)
,

h3 = a0
(
0, 0, 1

2

) (13)

(a0 is the lattice constant of Nb). The pairwise energies
V si

pq(r) of the strain-induced interaction of O interstitials and
the eigenvalues λσ (k) of the matrices V si

pq(k) are calculated
according to (3)–(5) and (10). The Green function G(R,R′)
used in our calculations is based on the set of Born–von
Kármán force constants taken from [21]. For our calculations
we used the ‘3f model’ and compared the results with ones
from the ‘2f model’. The forces for the two used models are
given in table 1.

2 ν is equal to the number of interstitial sublattices, e.g. in the case of the
Nb–O solid solution ν = 3.

Table 2. The strain-induced pairwise interaction energies V si
pq(r)

(eV) between O interstitials separated by r.

V si [eV] V si [eV]

r 2f model 3f model r 2f model 3f model

(0, 1
2 , 0) −0.826 0.668 (1,1,1) −0.033 −0.069

( 1
2 , 0, 1

2 ) −0.077 −0.481 (1, 3
2 ,0) 0.007 −0.028

( 1
2 , 1

2 , 1
2 ) −0.248 −0.119 ( 3

2 , 1, 1
2 ) 0.025 −0.017

(0, 0, 1) 1.099 0.713 (2, 0, 0) −0.035 0.046
(1, 0, 0) 0.018 −0.336 (0, 0, 2) 0.340 0.253
(1, 1

2 , 0) 0.126 −0.207 (2, 1
2 , 0) −0.018 −0.064

( 1
2 , 1, 1

2 ) −0.043 0.047 (1, 3
2 , 1) −0.021 0.039

(1, 1, 0) 0.128 0.110 ( 1
2 , 2, 1

2 ) −0.005 0.025

(1, 0, 1) −0.123 0.066 ( 3
2 , 0, 3

2 ) 0.011 0.017

(1, 1
2 , 1) 0.017 −0.026 ( 3

2 , 3
2 , 1

2 ) 0.022 0.032

(0, 3
2 , 0) −0.067 −0.081 ( 3

2 , 1
2 , 3

2 ) −0.042 0.001

( 1
2 , 0, 3

2 ) −0.045 0.145 (2, 1, 0) −0.018 −0.003

( 3
2 , 1

2 , 1
2 ) 0.008 −0.075 (0, 1, 2) −0.006 0.028

( 1
2 , 1

2 , 3
2 ) 0.044 −0.021 (2, 0, 1) 0.017 0.014

Table 2 summarizes the obtained strain-induced pairwise
interaction energies V si

pq(r) (eV) between two O interstitials
located at Rp = (0, 0, 1/2) and at an arbitrary position
(q,R′), respectively, separated by a vector r = R′

q − Rp.
Notice that the energies calculated within the 2f model

are significantly different from the ones deduced from the
3f model. In figures 3(a) and (b) the eigenvalue spectra
associated with the 2f and the 3f force model are plotted
along the high symmetry directions. Our ‘2f’ calculations
reproduce the previous conclusions [9], i.e. an ordering wave
with k = (1/2, 1/2, 0) and polarization vector υ1(p,k) =
1/

√
2(1, 1, 0). Not unexpectedly, the eigenvalue spectrum

associated with the 3f model deviates significantly from the
2f results and predicts a new pronounced minimum near the
incommensurate position k = (2/3, 2/3, 2/3). Interstitial
oxygen thus exhibits a strong trend to order with an ordering
wave which is intimately coupled to the soft LA 2/3(111)

phonon.
In the search for the possible ordered phases, the set

{ks} = { 2
3

2
3

2
3 } and the corresponding sets of the polarization

vectors {υσ (p,ks)} obtained from (10) were used to determine
the parameters of the distribution function (11) [19, 23, 24].
This comprehensive search resulted in only one possible
superstructure characterized by an ordering wave with the
polarization vector υ1(p,k) = 1/

√
3(1, 1, 1):

n(p,R) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

3
+ 2

3
η cos

[
4π

3
(x + y + z)

]
p = 1

1

3
+ 2

3
η cos

[
4π

3
(x + y + z)

]
p = 2

1

3
+ 2

3
η cos

[
4π

3
(x + y + z)

]
p = 3,

R = (x, y, z).
(14)
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Figure 3. (a), (b) Eigenvalues λk of the matrix V si
pq for two force models. Superstructure which corresponds to the (c) minimum λ( 1

2 , 1
2 ,0) for

the 2f model, (d) minimum λ( 2
3 , 2

3 , 2
3 ) for the 3f model.

One readily finds that n(p,R) can be cast into the form

n(p,R) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c + 2c · cos

[
4π

3
(x + y + z)

]
p = 1

c + 2c · cos

[
4π

3
(x + y + z)

]
p = 2

c + 2c · cos

[
4π

3
(x + y + z)

]
p = 3.

(15)
for any concentration c < 1

3 (with η = 3c).
Figure 3(d) illustrates the obtained incommensurate

superstructure with oxygen layers in the [111] direction, which
has the same stoichiometric composition as the commensurate
one but its atomic arrangement is formed by alternating (110)

planes (figure 3(c)).
Within linear response theory the static displacement field

U(R) reads [15, 19],

U(R) = 3c
∑

σ,ks

G(ks)
∑

p

F (p,ks)υσ (p,ks)γσ (ks)e
−iksR.

(16)
Equation (16) is valid within the concentration range 0–
4.2 at.% O, in which the Nb lattice parameter a0 depends
linearly on the O concentration [14]. We find that the
superstructure (15) modulates the static displacement field (16)

in such a way that two neighbouring (111) planes (which do
not contain O) move towards each other by a displacement
U[111] = ±0.316a0c(1, 1, 1), while each third (111) plane
(which contains O) remains unmoved (see figure 4). Such
a topology of the static displacement field is well known as
a precursor for the ω phase formation [25–28]. Note that
the fully collapsed ω phase is described by a displacement
U ∗

[111] = ±a0/12(1, 1, 1).
Within the mean-field approximation the critical (spin-

odal) temperature Tc of an order–disorder transition can be re-
lated to the energy minimum λ∗(k) of a given superstructure
by

Tc = − 1

kB
c(1 − c)λ∗(k). (17)

By identifying the energy value with λ∗
1(k) = −4.08 eV

and λ∗
3(k) = −8.25 eV associated with the commensurate

and incommensurate ordering wave (see figure 3(b)) the
transition temperatures have been estimated for low oxygen
concentrations. The calculated phase separation temperatures
are associated with the energy minimum at the 	 point
(λ∗

2(k) = −4.48 eV), and can be interpreted as a solubility
limit of atomic oxygen in Nb. Using (17) we calculated the
phase boundaries of the commensurate and incommensurate
ordering wave as well as the oxygen solubility limit. Figure 5

4
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Figure 4. Atomic displacements in the ordered state: (a) bcc unit cell with three adjacent (111) planes; (b) formation of the ω phase. The
atomic planes which do not contain oxygen are of shaded (blue), while the planes which contain oxygen are dashed-shaded (red).

Figure 5. Relevant part of the mean-field Nb–O phase diagram at
low oxygen concentrations displaying the calculated solubility limit
line and the order–disorder phase transition lines for the
superstructures which are associated with the positions of the
minimum at k = (2/3, 2/3, 2/3) and k = (1/2, 1/2, 0) of the
eigenvalue spectrum in figure 3(b).

shows the result of this rather straightforward calculation. It
predicts the existence of a new phase above the solubility
limit in which the incommensurate oxygen ordering wave is
thermodynamically stable, while the commensurate ordering
wave occurs below the solubility limit, thus is metastable
(dashed line). It is interesting to note that the incommensurate
oxygen ordering has never been observed. In fact, all
experiments carried out so far have only reported indications of
the metastable commensurate oxygen phase [7, 8]. Apparently,
the oxygen uptake conditions have been such that the system
was quenched into a metastable phase. From this theoretical
study we predict that the incommensurate ordering wave
should be observed if Nb is loaded with oxygen at a high
temperature T1 and then slowly cooled below the phase
transition line T2. It would also be interesting to investigate

how the different O ordering states affect the superconducting
properties of the Nb matrix.
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